STAT/MA 41600 ## In-Class Problem Set #12: September 22, 2014 Solutions by Mark Daniel Ward - **1a.** The mass of X is $P(X = j) = \binom{6}{j} (.40)^j (.60)^{6-j}$ for $0 \le j \le 6$, so $\mathbb{E}(X^2) = 0^2 P(X = 0) + 1^2 P(X = 1) + \dots + 6^2 P(X = 6) = 36/5$. - **1b.** Let X_1, X_2, \ldots, X_6 denote (respectively) whether the 1st, 2nd, ..., 6th person lives oncampus. Then $X = X_1 + \cdots + X_6$, so $\mathbb{E}(X^2) = \mathbb{E}((X_1 + \cdots + X_6)^2)$, which has 30 terms of the form $\mathbb{E}(X_i X_j)$ (for $i \neq j$) and 6 terms of the form $\mathbb{E}(X_j^2)$. Since X_i and X_j are independent for $i \neq j$, then $\mathbb{E}(X_i X_j) = \mathbb{E}(X_i)\mathbb{E}(X_j) = (.4)(.4) = .16$. Also, since indicators only take on values 0 or 1, then $\mathbb{E}(X_i^2) = \mathbb{E}(X_j) = .4$. Thus $\mathbb{E}(X^2) = (30)(.16) + (6)(.4) = .36/5$. - **1c.** We have $Var(X) = \mathbb{E}(X^2) (\mathbb{E}(X))^2 = 36/5 (12/5)^2 = 36/25$. - **1d.** Since the X_j 's are independent, $Var(X) = Var(X_1 + \cdots + X_6) = Var(X_1) + \cdots + Var(X_6)$. We have $Var(X_j) = \mathbb{E}(X_j^2) (\mathbb{E}(X_j))^2 = .4 (.4)^2 = 6/25$, so Var(X) = 6(6/25) = 36/25. - **2a.** The mass of X is $P(X = j) = \binom{7}{j} (1/3)^j (2/3)^{7-j}$ for $0 \le j \le 7$, so $\mathbb{E}(X^2) = 0^2 P(X = 0) + 1^2 P(X = 1) + \dots + 7^2 P(X = 7) = 7$. - **2b.** Let X_1, X_2, \ldots, X_7 denote (respectively) whether the 1st, 2nd, ..., 7th die shows a "high value". Then $X = X_1 + \cdots + X_7$, so $\mathbb{E}(X^2) = \mathbb{E}((X_1 + \cdots + X_7)^2)$, which has 42 terms of the form $\mathbb{E}(X_iX_j)$ (for $i \neq j$) and 7 terms of the form $\mathbb{E}(X_j^2)$. Since X_i and X_j are independent for $i \neq j$, then $\mathbb{E}(X_iX_j) = \mathbb{E}(X_i)\mathbb{E}(X_j) = (1/3)(1/3) = 1/9$. Also, since indicators only take on values 0 or 1, then $\mathbb{E}(X_j^2) = \mathbb{E}(X_j) = 1/3$. Thus $\mathbb{E}(X^2) = (42)(1/9) + (7)(1/3) = 7$. - **2c.** We have $Var(X) = \mathbb{E}(X^2) (\mathbb{E}(X))^2 = 7 (7/3)^2 = 14/9$. - **2d.** Since the X_j 's are independent, $Var(X) = Var(X_1 + \cdots + X_7) = Var(X_1) + \cdots + Var(X_7)$. We have $Var(X_j) = \mathbb{E}(X_j^2) (\mathbb{E}(X_j))^2 = 1/3 (1/3)^2 = 2/9$, so Var(X) = 7(2/9) = 14/9. - **3a.** The mass of X is $P(X = j) = \frac{\binom{3}{j}\binom{2}{3-j}}{\binom{5}{3}}$ for $1 \le j \le 3$, so $\mathbb{E}(X^2) = 1^2 P(X = 1) + 2^2 P(X = 2) + 3^2 P(X = 3) = 18/5$. - **3b.** Let X_1, X_2, X_3 denote (respectively) whether the 1st, 2nd, 3rd cookie chosen is chocolate. Then $X = X_1 + X_2 + X_3$, so $\mathbb{E}(X^2) = \mathbb{E}((X_1 + X_2 + X_3)^2)$, which has 6 terms of the form $\mathbb{E}(X_iX_j)$ (for $i \neq j$) and 3 terms of the form $\mathbb{E}(X_j^2)$. We have $\mathbb{E}(X_iX_j) = (3/5)(2/4) = 3/10$. Also, since indicators only take on values 0 or 1, then $\mathbb{E}(X_j^2) = \mathbb{E}(X_j) = 3/5$. Thus $\mathbb{E}(X^2) = (6)(3/10) + (3)(3/5) = 18/5$. - **3c.** We have $Var(X) = \mathbb{E}(X^2) (\mathbb{E}(X))^2 = 18/5 (9/5)^2 = 9/25$. - **3d.** The mass of Y is $P(Y=j) = \binom{3}{j} (3/5)^j (2/5)^{3-j}$ for $0 \le j \le 3$, so $\mathbb{E}(X^2) = .$ so $\mathbb{E}(Y^2) = 0^2 P(Y=0) + 1^2 P(Y=1) + \cdots + 3^2 P(X=3) = 99/25$. - **3e.** Let Y_1, Y_2, Y_3 denote (respectively) whether the 1st, 2nd, 3rd cookie chosen is chocolate. Then $X = Y_1 + Y_2 + Y_3$, so $\mathbb{E}(Y^2) = \mathbb{E}((Y_1 + Y_2 + Y_3)^2)$, which has 6 terms of the form $\mathbb{E}(Y_iY_j)$ (for $i \neq j$) and 3 terms of the form $\mathbb{E}(Y_j^2)$. Since Y_i and Y_j are independent for $i \neq j$, then $\mathbb{E}(Y_iY_j) = \mathbb{E}(Y_i)\mathbb{E}(Y_j) = (3/5)(3/5) = 9/25$. Also, since indicators only take on values 0 or 1, then $\mathbb{E}(Y_i^2) = \mathbb{E}(Y_j) = 3/5$. Thus $\mathbb{E}(Y^2) = (6)(9/25) + (3)(3/5) = 99/25$. - **3f.** We have $Var(Y) = \mathbb{E}(Y^2) (\mathbb{E}(Y))^2 = 99/25 (9/5)^2 = 18/25$. - **3g.** Since the Y_j 's are independent, $Var(Y) = Var(Y_1 + Y_2 + Y_3) = Var(Y_1) + Var(Y_2) + Var(Y_3)$. We have $Var(Y_j) = \mathbb{E}(Y_j^2) (\mathbb{E}(Y_j))^2 = 3/5 (3/5)^2 = 6/25$, so Var(Y) = 3(6/25) = 18/25. **4a.** The mass of X is $p_X(1) = 7/28$, $p_X(2) = 6/28$, $p_X(3) = 5/28$, $p_X(4) = 4/28$, $p_X(5) = 3/28$, $p_X(6) = 2/28$, and $p_X(7) = 1/28$, so $\mathbb{E}(X^2) = 1^2 P(X = 1) + 2^2 P(X = 2) + \cdots + 7^2 P(X = 7) = 12$. **4b.** In $\mathbb{E}(X^2)$, there are 12 terms of the form $\mathbb{E}(X_iX_7)$ where i < 7, but $X_iX_7 = 1$ if and only if $X \ge 7$, so $\mathbb{E}(X_iX_7) = \mathbb{E}(X_7) = 1/28$. There are 10 terms of the form $\mathbb{E}(X_iX_6)$ where i < 6, but $X_iX_6 = 1$ if and only if $X \ge 6$, so $\mathbb{E}(X_iX_6) = \mathbb{E}(X_6) = 1/28 + 2/28 = 3/28$. Etc., etc. Also, $\mathbb{E}(X_i^2) = \mathbb{E}(X_j)$ for each j. Thus $$\mathbb{E}(X^2) = (12)\mathbb{E}(X_7) + (10)\mathbb{E}(X_6) + (8)\mathbb{E}(X_5) + (6)\mathbb{E}(X_4) + (4)\mathbb{E}(X_3) + (2)\mathbb{E}(X_2) + \mathbb{E}(X_7) + \mathbb{E}(X_6) + \mathbb{E}(X_5) + \mathbb{E}(X_4) + \mathbb{E}(X_3) + \mathbb{E}(X_2) + \mathbb{E}(X_1) = (13)\mathbb{E}(X_7) + (11)\mathbb{E}(X_6) + (9)\mathbb{E}(X_5) + (7)\mathbb{E}(X_4) + (5)\mathbb{E}(X_3) + (3)\mathbb{E}(X_2) + (1)\mathbb{E}(X_1) = (13)(1/28) + (11)(3/28) + (9)(6/28) + (7)(10/28) + (5)(15/28) + (3)(21/28) + (1)(1) = 12$$ **4c.** We have $Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = 12 - (3)^2 = 3$. **5a.** The mass of X is P(X = 1) = 9/24; P(X = 2) = 7/24; P(X = 3) = 5/24; P(X = 4) = 3/24, so $\mathbb{E}(X^2) = 1^2 P(X = 1) + 2^2 P(X = 2) + 3^2 P(X = 3) + 4^2 P(X = 4) = 65/12$. **5b.** In $\mathbb{E}(X^2)$, there are 6 terms of the form $\mathbb{E}(X_i X_4)$ where i < 4, but $X_i X_4 = 1$ if and only if $X \ge 4$, so $\mathbb{E}(X_i X_4) = \mathbb{E}(X_4) = 3/24$. There are 4 terms of the form $\mathbb{E}(X_i X_3)$ where i < 3, but $X_i X_3 = 1$ if and only if $X \ge 3$, so $\mathbb{E}(X_i X_3) = \mathbb{E}(X_3) = 3/24 + 5/24 = 8/24$. There are 2 terms of the form $\mathbb{E}(X_1 X_2)$, but $X_1 X_2 = 1$ if and only if $X \ge 2$, so $\mathbb{E}(X_1 X_2) = \mathbb{E}(X_2) = 3/24 + 5/24 = 15/24$. Also, $\mathbb{E}(X_i^2) = \mathbb{E}(X_i)$ for each j. Thus $$\mathbb{E}(X^2) = (6)\mathbb{E}(X_4) + (4)\mathbb{E}(X_3) + (2)\mathbb{E}(X_2) + \mathbb{E}(X_4) + \mathbb{E}(X_3) + \mathbb{E}(X_2) + \mathbb{E}(X_1)$$ $$= (7)\mathbb{E}(X_4) + (5)\mathbb{E}(X_3) + (3)\mathbb{E}(X_2) + (1)\mathbb{E}(X_1)$$ $$= (7)(3/24) + (5)(8/24) + (3)(15/24) + (1)(1)$$ $$= 65/12$$ **5c.** We have $Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = 65/12 - (25/12)^2 = 155/144$. **6a.** The mass of X is P(X = 1) = 3/729; P(X = 2) = 186/729; P(X = 3) = 540/729, so $\mathbb{E}(X^2) = 1^2 P(X = 1) + 2^2 P(X = 2) + 3^2 P(X = 3) = 623/81$. **6b.** Let X_1, X_2, X_3 indicate (respectively) whether red, white, and blue is ever used. Then $X = X_1 + X_2 + X_3$, so $\mathbb{E}(X^2) = \mathbb{E}((X_1 + X_2 + X_3)^2)$, which has 6 terms of the form $\mathbb{E}(X_i X_j)$ (for $i \neq j$) and 3 terms of the form $\mathbb{E}(X_j^2)$. We have $\mathbb{E}(X_i X_j) = \frac{3^6 - 2^6 - 2^6 + 1^6}{3^6}$. Also, since indicators only take on values 0 or 1, then $\mathbb{E}(X_j^2) = \mathbb{E}(X_j) = \frac{3^6 - 2^6}{3^6}$. Thus $\mathbb{E}(X^2) = (6) \frac{3^6 - 2^6 - 2^6 + 1^6}{3^6} + (3) \frac{3^6 - 2^6}{3^6} = 623/81$. **6c.** We have $Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = 623/81 - (665/243)^2 = 11942/59049$.