STAT/MA 41600
In-Class Problem Set #14/#15: September 24, 2014
Solutions by Mark Daniel Ward

1a. We have $X_j = 1$ if and only if the first $j - 1$ students live off-campus, which happens with probability 0.6^{j-1}; otherwise, $X_j = 0$. So $E(X_j) = 0.6^{j-1}$.

1b. We calculate $E(X) = E\left(\sum_{j=1}^{\infty} X_j\right) = \sum_{j=1}^{\infty} E(X_j) = \sum_{j=1}^{\infty} 0.6^{j-1} = \frac{1}{1-0.6} = \frac{1}{0.4} = 5/2$.

2a. We have $X_j = 1$ if and only if the first $j - 1$ are not “high values”, which happens with probability $(2/3)^{j-1}$; otherwise, $X_j = 0$. So $E(X_j) = (2/3)^{j-1}$.

2b. We calculate $E(X) = E\left(\sum_{j=1}^{\infty} X_j\right) = \sum_{j=1}^{\infty} E(X_j) = \sum_{j=1}^{\infty} (2/3)^{j-1} = \frac{1}{1-2/3} = \frac{1}{1/3} = 3$.

3a. It is true that $X = X_1 + X_2 + X_3 + X_4 + X_5$, where $X_j = 1$ if the jth adjacent pair of chairs show the same result, or $X_j = 0$ otherwise. BUT the X_j’s are not a collection of five independent indicator random variables. For instance, if $X_1 = 1$, $X_2 = 1$, $X_3 = 1$, $X_4 = 1$, then we must have $X_5 = 1$ too (because all 5 flips must match in this case). An alternative way to realize this is to see that, if $X_1 = 0$, $X_2 = 0$, $X_3 = 0$, $X_4 = 0$, then we must have $X_5 = 1$ (because if the flips are strictly alternating as we move around the table, the first and last flips must match, since there are an odd number of flips). So the X_j’s are not (as a collection) all independent. So X is not Binomial. [[In fact, it is an interesting exercise to find the probability mass function of X. You did not have to calculate it, but I will give it here, in case you are interested: The mass of X is $p_X(0) = 0$, $p_X(1) = 10/32$, $p_X(2) = 0$, $p_X(3) = 20/32$, $p_X(4) = 0$, $p_X(5) = 2/32$, which is not Binomial at all!!]]

3b. As above, let $X = X_1 + X_2 + X_3 + X_4 + X_5$, where $X_j = 1$ if the jth adjacent pair of chairs show the same result, or $X_j = 0$ otherwise. Then $E(X_j) = E(X_1 + X_2 + X_3 + X_4 + X_5) = E(X_1) + E(X_2) + E(X_3) + E(X_4) + E(X_5) = 5(1/2) = 5/2$.

3c. Let $X = X_1 + X_2 + \cdots + X_{75}$, where $X_j = 1$ if the jth adjacent pair of chairs show the same result, or $X_j = 0$ otherwise. Then $E(X_j) = E(X) = E(X_1 + X_2 + \cdots + X_{75}) = E(X_1) + E(X_2) + \cdots + E(X_{75}) = 75(1/2) = 75/2$.

4. Let $X = X_1 + X_2 + X_3 + X_4 + X_5 + X_6$, where $X_j = 1$ if the jth adjacent pair of rocks show the same result, or $X_j = 0$ otherwise. Then $E(X_j) = 1/3$, so $E(X) = E(X_1 + X_2 + X_3 + X_4 + X_5 + X_6) = E(X_1) + E(X_2) + E(X_3) + E(X_4) + E(X_5) + E(X_6) = 6(1/3) = 2$.

5. The mass of Z is $P(X = 0) = 6/36$; $P(X = 1) = 10/36$; $P(X = 2) = 8/36$; $P(X = 3) = 6/36$; $P(X = 4) = 4/36$; $P(X = 5) = 2/36$; So $E(Z) = 0(6/36) + 1(10/36) + 2(8/36) + 3(6/36) + 4(4/36) + 5(2/36) = 70/36 = 35/18$. Alternatively, the expected value is $E(|X - Y|) = \sum_{x=1}^{6} \sum_{y=1}^{6} \frac{1}{36} |x - y| = 35/18$.

6. We are given that there are exactly 5 rolls which are 9’s or 11’s. Given that a roll is 9 or 11, the probability it is a 9 is $\frac{4/36}{4/36 + 2/36} = 4/6 = 2/3$. Thus, given $X + Y = 5$, and knowing that the rolls are independent, the conditional distribution of X is Binomial with $n = 5$ and $p = 2/3$. In other words, $p_{X|X+Y}(x \mid 5) = \binom{5}{x} (2/3)^x (1/3)^{5-x}$ for $0 \leq x \leq 5$.\]