

- 1. Catherine watches raindrops hit the window. The number of raindrops that fall in a fixed period of time is Poisson with an average of 6 per minute.
- **1a.** What is the probability that exactly 5 raindrops fall during the next one minute?
- **1b.** What is the probability that no raindrops fall during the next one minute?
- 1c. What is the probability that 4 or more raindrops fall during the next one minute?
- 2. (Same problem setup as (1).)
- 2a. What is the probability that exactly 1 raindrop falls during the next 15 seconds?
- **2b.** What is the probability that no raindrops fall during the next 15 seconds?
- **2c.** What is the probability that 3 or more raindrops fall during the next 15 seconds?
- **3.** Let X be a Poisson random variable with $\mathbb{E}(X) = \lambda$. Give a (relatively simple) expression for $P(X \ge 4)$.
- 4. Dr. Ward estimates that, among 10,000 students on campus, the students choose independently whether to visit the MATH library on a given day. Each student decides to visit with probability 1/1000, or to avoid the MATH library with probability 999/1000. Let X denote the number of people who visit the MATH library on a given day.
- **4a.** What is the mass of X?
- **4b.** What is $\mathbb{E}(X)$?
- **4c.** What is Var(X)?
- **4d.** Estimate the probability that 9 people visit the MATH library on a given day.
- 5. Dr. Ward estimates that, among 10,000 students on campus, the students choose independently whether to go to Purdue Salvage on a given day. Each student decides to go to Purdue Salvage probability 3/10000, or to avoid going to Purdue Salvage with probability 9997/10000. Let X denote the number of people who go to Purdue Salvage on a given day. 5a. Estimate $P(X \ge 5)$.

Now suppose that, among the 10,000 students on campus, the students choose independently whether to go to the US postal office on a given day. Each student decides to go to the US postal office with probability 5/10000, or to avoid going to the US postal office with probability 9995/10000. Let Y denote the number of people who go to the US postal office on a given day. Also assume that the Purdue Salvage and US postal office choices are independent, so X and Y are independent.

- **5b.** Estimate $P(8 \le X + Y \le 9)$. [Hint: The distributions of X and Y are each approximately Poisson, and they are independent, so X + Y is approximately Poisson too.]
- **6.** If X is a Poisson random variable with parameter λ and Y is a Geometric random variable with $\mathbb{E}(Y) = 1/p$, and if X and Y are independent, find P(Y > X). Hint: $P(Y > X) = \sum_{x=0}^{\infty} \sum_{y=x+1}^{\infty} p_{X,Y}(x,y)$.