STAT/MA 41600 In-Class Problem Set #33: November 5, 2014

1. Suppose V, W are independent exponential random variables, with $\mathbb{E}(V) = \mathbb{E}(W) = 1/3$. Let X = V + W.

- **1a.** What is the standard deviation of *X*?
- **1b.** What is the density of X?
- **1c.** Calculate $P(X \leq 1)$.

2. Same setup as #1. 2a. What is P(V > W)? What is P(V = W)? What is P(V < W)? 2b. Calculate $P(X \ge 1/2)$.

3. Suppose that X, Y have joint density $f_{X,Y}(x, y) = 25e^{-5x-5y}$ for x > 0 and y > 0, and $f_{X,Y}(x, y) = 0$ otherwise. Define V = X + Y. **3a.** What is the density of V? **3b.** What is the CDF of V?

4. Same setup as #3.
4a. What is the variance of V?
4b. Calculate P(V ≤ 1/5).

5. Review question: Suppose that X is a Poisson random variable with parameter $\lambda > 0$, and suppose that Y is a Geometric random variable with $\mathbb{E}(Y) = 1/p$. Find P(Y > X). [Hint: You can evaluate a double-sum, and it might be helpful to put the sum over x's on the outer sum and the sum over y's on the inner sum.]

6. Let $Y = \lfloor X \rfloor$ denote the largest integer that is less than or equal to X. For instance: $\lfloor 7.2 \rfloor = 7$, and $\lfloor 2.99 \rfloor = 2$ and $\lfloor 4 \rfloor = 4$. Now suppose that X is an Exponential random variable with $\mathbb{E}(X) = 1/3$. 6a. Find $P(Y \ge 1)$. 6b. Find $P(Y \ge 5)$. 6c. Find $P(Y \ge 10)$.

6d. Can you generalize? What is $P(Y \ge x)$, when x is a (nonnegative) integer?

6e. What kind of discrete random variable is Y?