Example of Bayes’ Theorem (third version).

Suppose we put five different dice into a hat. The dice have the following number of
sides: 4, 6, 8, 12, 20. When we choose a die from the hat, each of the five of the dice are
equally likely to appear.

Suppose that a “3” appears. What is the probability it was the 4-sided die that was
chosen?

Let A; be the event that the 4-sided die was chosen, Ay be the event that the 6-sided
die was chosen, Az be the event that the 8-sided die was chosen, A4 be the event that the
12-sided die was chosen, and As be the event that the 20-sided die was chosen. Notice that
A;’s are disjoint (non-overlapping) and that the union of the A;’s is all of S. Let B denote
the event that a “3” appears on the chosen die. Notice we don’t know P(B) either! We use
this form of Bayes’ Theorem:

P(A;)P(Bl4;)
(A1) P(B|Ay) + P(A2) P(B|A2) + P(As) P(B|As) + P(A4) P(B|A4) + P(A5) P(B|A5)

P(4;|B) = -

In particular, we focus on 7 = 1 case.
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The probability that the 6-sided die was chosen, given that “3” appeared, is

P(A1|B) =
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The probability that the 8-sided die was chosen, given that “3” appeared, is
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The probability that the 12-sided die was chosen, given that “3” appeared, is
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The probability that the 20-sided die was chosen, given that “3” appeared, is
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Finally, we notice that P(A;|B) + P(As|B) + P(As|B) + P(A4|B) + P(A5|B) = 1, as we
know it should.




