Use the joint density of X and Y to find the single-variable density of X or of Y. (Sometimes called the marginal density of X or Y.)

In general if X and Y have joint density $f_{X,Y}(x,y)$
then X has density $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$ i.e. think: integrating y out of the picture,

and Y has density $f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx$ i.e. integrate x out of the picture.

Example Say X, Y have joint density $f_{X,Y}(x,y) = \begin{cases} 6e^{-2x-3y} & x>0, y>0 \\ 0 & \text{otherwise} \end{cases}$

Then X has density $f_X(x) = 0$ if $x<0$

or if $x>0$: $f_X(x) = \int_{0}^{\infty} 6e^{-2x-3y} \, dy = 6e^{-2x} \left[-\frac{1}{3} \right]_{y=0}^{\infty} = 2e^{-2x}$ (for $x>0$)

Also Y has density : $f_Y(y) = 0$ if $y<0$

or if $y>0$: $f_Y(y) = \int_{0}^{\infty} 6e^{-2x-3y} \, dx = 6e^{-3y} \left[-\frac{1}{2} \right]_{x=0}^{\infty} = 3e^{-3y}$

(for $y>0$)

This method works in general if you have the joint density of X and Y but just want the single variable density of X or of Y.
