Example: Suppose \(X \) has density \(f_X(x) = \frac{7^3}{(3-1)!} x^{3-1} e^{-7x} \) for \(x > 0 \)

\[= 0 \text{ otherwise} \]

and suppose \(Y \) has density \(f_Y(y) = \frac{7^5}{(5-1)!} y^{5-1} e^{-7y} \) for \(y > 0 \)

\[= 0 \text{ otherwise} \]

and suppose \(X \) and \(Y \) are independent. Q: What kind of random variable is \(X + Y \)?

Notice that \(X \) has the same distribution as \(X_1 + X_2 + X_3 \)
where the \(X_j \)'s are independent Exponential random variables, each with \(\lambda = 7 \).

Notice that \(Y \) has the same distribution as \(Y_1 + Y_2 + Y_3 + Y_4 + Y_5 \)
where the \(Y_j \)'s are independent Exponential random variables, each with \(\lambda = 7 \).

So \(X + Y \) has the same distribution as the sum of 8 independent Exponential random variables, each with \(\lambda = 7 \).

So \(X + Y \) is a Gamma random variable with \(\lambda = 7, r = 8 \).

More generally, if we sum several independent Gamma random variables with a common parameter \(\lambda \) and possibly different \(r \) values, then the sum is also a Gamma random variable with the same parameter \(\lambda \) and with \(r \) equal to the sum of the \(r \)'s of the Gamma random variables that make up the sum.