Approximating a Binomial random variable by a Standard Normal random variable - we must scale and shift the Binomial random variable appropriately.

$$Z \sim \frac{X - np}{\sqrt{npq}}$$

Similarly we can use a Normal approximation to Poisson random variables with large parameter λ.

In other words, if X is a Poisson random variable with large parameter λ, then $\frac{X - \lambda}{\sqrt{\lambda}}$ is approximately distributed like a standard normal random variable.

(To think about why this is true, write the Poisson X as a sum of λ Poisson random variables that are each having parameter 1 and that are independent, if λ is an integer.)

E.g. Suppose X is a Poisson random variable with $\lambda = 700$.

Approximate $P(X \leq 730) = P(X \leq 730.5)$

$$\frac{728}{\sqrt{700}} \frac{729}{\sqrt{700}} \frac{730}{\sqrt{700}} \frac{731}{\sqrt{700}} \frac{732}{\sqrt{700}}$$

$\approx P(Z \leq 1.15) = 0.8749$

By the way, the exact value is

$$P(X \leq 730) = \sum_{j=0}^{730} \frac{e^{-700} 700^j}{j!} = 0.8750977....$

The approximation is pretty good!