STAT /MA 41600
Practice Problems: October 17, 2014
Solutions by Mark Daniel Ward

1. The joint density is constant on a region of area (3)(3)/2 = 9/2. So the joint density

fx(z) is 2/9 on the triangle, and 0 otherwise.
Method #1: We integrate 2/9 over the region, which is shown in Figure 1(a), and we get
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Method #2: We integrate 2/9 over the complementary region, which is shown in Figure 1(b),
and we get
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Method #3: Actually we don’t need to integrate a constant density. We integrate the
constant over a region, so the integral is the area of the shaded region (here, 5/2; see

Figure 1(a)) over the area of the whole region (here, 9/2), so the probability is % =5/9.



Figure 1: (a.) The region where X+Y > 2; (b.) the complementary region, where X +Y < 2.

2. The joint density is constant on a region of area 18. So the joint density fx(x) is 1/18
on the quadrilateral, and 0 otherwise.
Method #1: We integrate 1/18 over the region, which is shown in Figure 2(a), and we get
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Method #2: We integrate 1/18 over the complementary region, which is shown in Figure 2(b),
and we get
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Method #3: Actually we don’t need to integrate a constant density. We integrate the con-

stant over a region, so the integral is the area of the shaded region (here, 12; see Figure 2(a))
over the area of the whole region (here, 18), so the probability is 12/18 = 2/3.
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Figure 2: (a.) The region where Y > 3X; (b.) the complementary region, where Y < 3X.



3. We have two ways to setup the integral:

Method #1: We can integrate first over all x’s (i.e., use integration with respect to x as
the outer integral), and then fix x and integrate over all of the y’s that are smaller than z,
namely, 0 <y < z, as shown in Figure 3.
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Figure 3: Setting up the integral for P(X > Y), with x as the outer integral and y as the
inner integral. Fixed value of = (here, for example z = 3.2), and y ranging from 0 to x.

Now we perform the joint integral, as specified in Figure 3, and we get
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Method #2: We can integrate first over all y’s (i.e., integrating with respect to y as the outer
integral), and then fix y and integrate over all of the x’s that are larger than y, namely, y < x,
as shown in Figure 4.
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Figure 4: Setting up the integral for P(X > Y'), with y as the outer integral and = as the
inner integral. Fixed value of y (here, for example y = 2.6), and = ranging from y to oo.

Now we perform the joint integral, as specified in Figure 4, and we get
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4. Method #1: We can integrate the joint density over the region where | X — Y| < 1, which
is shown in Figure 5. The desired probability is
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Method #2: The desired region has area 7, and the entire region has area 16. Since the
joint density is constant, it follows that P(|X — Y| < 1) = 7/16.

Method #3: The complementary region has area 9, and the entire region has area 16.
Since the joint density is constant, it follows that P(|X —Y|<1)=1-9/16 = 7/16.



Figure 5: Setting up the integral for P(|X — Y| < 1).

5. The region is shown in Figure 6.
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Figure 6: Setting up the integral for P(Y > X).



Method #1: We can integrate with respect to y as the outer integral and with respect to

x as the inner integral.
The desired probability is
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Method #2: We can integrate with respect to x as the outer integral and with respect to

y as the inner integral.
The desired probability is

/02/:%(3—x)(2—y)dydx—/02

(3—2)(2y — v*/2)

y=z

(3—2)(2 -2z +2%2)dx

Il
o\..
S
Ol ©Ol~ O+

<6 — 8z + ;f - x3/2) dx

2

1 2 7 3 4
= 9 (63:—43: —1—61’ —33/8> -
_ é 6(2) — 3(2)% + =(2)% — (2)> + 2(2)% — (2)4/8)
=10/27



