1. Consider a pair of random variables X, Y with constant joint density on the triangle with vertices at (0, 0), (3, 0), and (0, 3).
 a. Are X and Y independent? Why or why not?

 b. Find the density $f_X(x)$ of X.

 c. Find the density $f_Y(y)$ of Y.
2. Consider a pair of random variables X, Y with constant joint density on the quadrilateral with vertices $(0,0), (2,0), (2,6), (0,12)$.
 a. Are X and Y independent? Why or why not?

b. Find the density $f_X(x)$ of X.

c. Find the density $f_Y(y)$ of Y.
3. Let X, Y have joint density $f_{X,Y}(x, y) = 14e^{-2x-7y}$ for $x > 0$ and $y > 0$; and $f_{X,Y}(x, y) = 0$ otherwise.
 a. Are X and Y independent? Why or why not?

 b. Find the density $f_X(x)$ of X.

 c. Find the density $f_Y(y)$ of Y.
4. Suppose \(X, Y \) has joint density

\[
f_{X,Y}(x, y) = \begin{cases}
1/16 & \text{if } -2 \leq x \leq 2 \text{ and } -2 \leq y \leq 2, \\
0 & \text{otherwise}.
\end{cases}
\]

a. Are \(X \) and \(Y \) independent? Why or why not?

b. Find the density \(f_X(x) \) of \(X \).

c. Find the density \(f_Y(y) \) of \(Y \).
5. Suppose X, Y has joint density

$$f_{X,Y}(x, y) = \begin{cases} \frac{1}{9}(3 - x)(2 - y) & \text{if } 0 \leq x \leq 3 \text{ and } 0 \leq y \leq 2, \\ 0 & \text{otherwise.} \end{cases}$$

a. Are X and Y independent? Why or why not?

b. Find the density $f_X(x)$ of X.

c. Find the density $f_Y(y)$ of Y.
