1. Let Alice roll a 6-sided die and let \(X \) denote the result of her roll. Let Bob roll a pair of 4-sided dice and let \(Y \) denote the sum of the two values on his two dice. Find \(P(X < Y) \).

2. Suppose that a drawer contains 8 marbles: 2 are red, 2 are blue, 2 are green, and 2 are yellow. The marbles are rolling around in a drawer, so that all possibilities are equally likely when they are drawn. Alice chooses 2 marbles without replacement, and then Bob also chooses 2 marbles without replacement. Let \(Y \) denote the number of red marbles that Alice gets, and let \(X \) denote the number of red marbles that Bob gets.

 2a. Find \(p_{X|Y}(0 \mid 0) \), \(p_{X|Y}(1 \mid 0) \), and \(p_{X|Y}(2 \mid 0) \). Check that these 3 probabilities sum to 1.

 2b. Find \(p_{X|Y}(0 \mid 1) \) and \(p_{X|Y}(1 \mid 1) \). Check that these 2 probabilities sum to 1.

3. Consider 5 fish in a bowl: 3 of them are red, and 1 is green, and 1 is blue. Select the fish one at a time, without replacement, until the bowl is empty.

 Let \(X = 1 \) if all of the red fish are selected, before the green fish is selected; and \(X = 0 \) otherwise.

 Let \(Y = 1 \) if all of the red fish are selected, before the blue fish is selected; and \(Y = 0 \) otherwise.

 3a. Find the joint probability mass function of \(X \) and \(Y \).

 3b. Make sure that the four probabilities \(p_{X,Y}(0,0) \), \(p_{X,Y}(0,1) \), \(p_{X,Y}(1,0) \), and \(p_{X,Y}(1,1) \) from part 3a have a sum of 1.

 3c. Find the probability \(p_X(1) \). Find the probability \(p_Y(1) \).

 3d. Are \(X \) and \(Y \) independent?

4. Suppose that a person rolls a 6-sided die until the first occurrence of 4 appears, and then the person stops afterwards. Let \(Y \) denote the number of rolls that are needed. Let \(X \) denote the number of rolls (during this same experiment) on which a value of 3 appears. Find a formula for \(p_{X|Y}(x \mid y) \).