1. Consider three independent continuous Uniform random variables, each of which has a constant density on $[0, 10]$.
 a. Find the density $f_{X(1)}(x_1)$ of the 1st order statistic (i.e., find the density of the min).
 b. Find the density $f_{X(2)}(x_2)$ of the 2nd order statistic.
 c. Find the density $f_{X(3)}(x_3)$ of the 3rd order statistic (i.e., find the density of the max).

2. Same setup as question #1.
 a. Find $E(X(1))$.
 b. Find $E(X(2))$.
 c. Find $E(X(3))$.
 d. Since the sum of the three random variables and the sum of the three order statistics must be the same (always), then their expected values are the same, i.e., $X_1 + X_2 + X_3 = X_{(1)} + X_{(2)} + X_{(3)}$. So $E(X_1 + X_2 + X_3) = E(X_{(1)} + X_{(2)} + X_{(3)})$. We also know that $E(X_1 + X_2 + X_3) = E(X_1) + E(X_2) + E(X_3) = 5 + 5 + 5 = 15$. Use this to double check your answers to parts a, b, c. Do the answers sum up to 15?

3. Suppose X_1, X_2 are independent continuous random variables with $f_{X_1,X_2}(x_1, x_2) = (1/8)(4 - x_1)(4 - x_2)$ on the square $0 < x_1 < 4$ and $0 < x_2 < 4$, and $f_{X_1,X_2}(x_1, x_2) = 0$ otherwise.
 a. Find the density $f_{X_{(1)}}(x_1)$ of the 1st order statistic (i.e., find the density of the min).
 b. Find the density $f_{X_{(2)}}(x_2)$ of the 2nd order statistic (i.e., find the density of the max).

4. Same setup as question #3.
 a. Find $E(X_{(1)})$.
 b. Find $E(X_{(2)})$.
 c. Since the sum of the two random variables and the sum of the two order statistics must be the same (always), then their expected values are the same, i.e., $X_1 + X_2 = X_{(1)} + X_{(2)}$. So $E(X_1 + X_2) = E(X_{(1)} + X_{(2)})$. We also know that $E(X_1 + X_2) = E(X_1) + E(X_2) = 4/3 + 4/3 = 8/3$. Use this to double check your answers to parts a, b. Do the answers sum up to $8/3$?