1. Children are decorating rocks with paint and sparkly material, to give as gifts. The weights of the rocks are assumed to be uniformly distributed between 0.5 and 2.2 pounds. Let X denote the weight of such a rock. Suppose that the cost of the materials to be used on such a rock is $Y = \frac{2}{5}X + 0.1$.
 a. Find the probability density function $f_Y(y)$ of Y. Be sure to specify where $f_Y(y)$ is nonzero.
 b. Use $f_Y(y)$ to find the probability that Y is less than 0.60.
 c. Check your answer by using $f_X(x)$ to find the probability that $(2/5)X + 0.1$ is less than 0.60.

2. Same setup as #1.
 a. What are the mean and standard deviation of the cost Y of the materials used on such a rock?
 b. Now suppose that 100 such rocks are to be decorated, and their weights are independent. Use X_j to denote the weight of the jth rock. Thus, the cost of materials used to decorate the jth rock is $Y_j = \frac{2}{5}X_j + 0.1$. Find a good approximation for the distribution of the total cost, namely, $Y_1 + \cdots + Y_{100}$.

3. Suppose that X is a continuous random variable that is uniformly distributed on the interval $(0, 3)$. Suppose that we define $Y = (X + 3)(X - 3)$.
 a. What is the probability density function $f_Y(y)$ of Y? For which values of y is the density nonzero?
 b. Use $f_Y(y)$ to get the mean of Y, as $\mathbb{E}(Y) = \int_{-\infty}^{\infty} y f_Y(y) \, dy$.
 c. Use $f_X(x)$ to get the mean of Y indirectly, as $\mathbb{E}(Y) = \int_{-\infty}^{\infty} (x + 3)(x - 3) f_X(x) \, dx$. Your solution should agree with 3b.

4. Suppose that the joint distribution of X and Y is uniform in the triangular region of the (x, y)-plane with corners at the origin and $(5, 0)$ and $(5, 2)$.
 a. Find $\mathbb{E}(X)$.
 b. Find $\mathbb{E}(Y)$.
 c. Find $\mathbb{E}(XY)$.
 d. Use your solutions to parts a, b, c to find the covariance of X and Y.