1. We have $P(Y \leq 3X) = \int_{0}^{\infty} \int_{y/3}^{\infty} 21e^{-3x-7y} \, dx \, dy = \int_{0}^{\infty} 7e^{-8y} \, dy = 7/8$.

2. Let X denote the number of jelly beans produced during the 1 hour. Then $P(41600 \leq X \leq 41700) = P(41599.5 \leq X \leq 41700.5) = P\left(\frac{41599.5 - 41666.67}{\sqrt{41666.67}} \leq \frac{X - 41666.67}{\sqrt{41666.67}} \leq \frac{41700.5 - 41666.67}{\sqrt{41666.67}}\right) \approx P(-0.33 \leq Z \leq 0.17)$ $= P(Z \leq 0.17) - P(Z \leq -0.33) = P(Z \leq 0.17) - P(Z \geq 0.33) = P(Z \leq 0.17) - (1 - P(Z \leq 0.33)) = 0.5675 - (1 - 0.6293) = 0.1968$.

3. Let X be the number of students who attend. Then X is Binomial with $n = 400$, $p = 0.60$, so $P(230 \leq X \leq 250) = P(229.5 \leq X \leq 250.5) = P\left(\frac{229.5 - (400)(0.60)}{\sqrt{(400)(0.60)(0.40)}} \leq \frac{X - (400)(0.60)}{\sqrt{(400)(0.60)(0.40)}} \leq \frac{250.5 - (400)(0.60)}{(400)(0.60)(0.40)}\right) \approx P(-1.07 \leq Z \leq 1.07) = P(Z \leq 1.07) - P(Z < -1.07) = P(Z \leq 1.07) - P(Z > 1.07) = P(Z \leq 1.07) - (1 - P(Z \leq 1.07)) = 2P(Z \leq 1.07) - 1 = 2(0.8577) - 1 = .7154$.

4. The probability is $\int_{0}^{10} \int_{x}^{\infty} \left(\frac{1}{10}\right) e^{-y/5} \, dy \, dx = \int_{0}^{10} -\frac{1}{10} e^{-y/5}\bigg|_{y=x} \, dx = \int_{0}^{10} \frac{1}{10} e^{-x/5} \, dx = \frac{1}{2} \int_{0}^{10} \frac{1}{5} e^{-x/5} \, dx$, but the last integral is just the CDF of an exponential with average of 5, evaluated at 10. So the overall probability is $\frac{1}{2}(1 - e^{-10/5}) = \frac{1}{2}(1 - e^{-2}) = 0.4323$.

5. We have $f_{Y|X}(y \mid x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$. The numerator is $10e^{-3x-2y}$. The denominator is $f_X(x) = \int_{x}^{\infty} 10e^{-3x-2y} \, dy = 5e^{-5x}$. Thus $f_{Y|X}(y \mid x) = \frac{10e^{-3x-2y}}{5e^{-5x}} = 2e^{2x-2y}$ for $x < y < \infty$, and $f_{Y|X}(y \mid x) = 0$ otherwise. When $x = 2$, we get $f_{Y|X}(y \mid 2) = 2e^{2(2)-2y} = 2e^{4-2y}$. Thus $P(Y > 3 \mid X = 2) = \int_{3}^{\infty} f_{Y|X}(y \mid 2) \, dy = \int_{3}^{\infty} 2e^{4-2y} \, dy = e^{-2}$.

Bonus. The probability Z exceeds $X+Y$ is $\int_{0}^{1} P(X+Y \leq z) f_Z(z) \, dz = \int_{0}^{1} (z^2/2) \, dz = 1/6$. The same probability holds for X to exceed $Y+Z$ or for Y to exceed $X+Z$. So the desired probability is $(3)(1/6) = 1/2$.

Question 1 was the same as question 3b in problem set 25 from 2015.
Question 2 was like question 4b in problem set 37 from 2016, with the numbers changed.
Question 3 was the same as question 2 in “practice problems”, problem set 37, part 2.
Question 4 was the same as question 5 in “practice problems”, problem set 32.
Question 5 was the same as question 3b in problem set 27 from 2014.