STAT/MA 41600  
In-Class Problem Set #24: October 10, 2018  
Solutions by Mark Daniel Ward

**Problem Set 24 Answers**

1a. We calculate \( P(X > 20) = \int_{20}^{\infty} \frac{1}{25} e^{-x/25} \, dx = -e^{-x/25} \big|_{x=20}^{\infty} = e^{-20/25} = e^{-4/5} = 0.4493. \)

1b. The probability that no Group Me message arrives in the next 1 minute (60 seconds) is \( P(X > 60) = \int_{60}^{\infty} \frac{1}{25} e^{-x/25} \, dx = -e^{-x/25} \big|_{x=60}^{\infty} = e^{-60/25} = e^{-12/5} = 0.0907. \)

1c. The median value “a” has the property \( 1/2 = P(X > a) = \int_{a}^{\infty} \frac{1}{25} e^{-x/25} \, dx = -e^{-x/25} \big|_{x=a}^{\infty} = e^{-a/25}. \) Since we have \( 1/2 = e^{-a/25} \) then \( \ln(1/2) = -a/25 \), so the median is \( a = -25 \ln(1/2). \)

2a. We have \( f_X(x) = 1/6.2 \) for \( 0 \leq x \leq 6.2 = 0.1613. \)

2b. We have \( P(X > 2) = \int_{2}^{6.2} 1/6.2 \, dx = (6.2 - 2)/6.2 = 0.6774. \)

2c. The median value “a” has the property \( 1/2 = P(X > a) = \int_{a}^{6.2} 1/6.2 \, dx = (6.2 - a)/6.2. \) Since we have \( 1/2 = (6.2 - a)/6.2 \) then \( (1/2)(6.2) = 6.2 - a \), and we conclude \( a = 6.2 - (1/2)(6.2) = 3.1. \)

3a. We calculate \( P(28 < 2X < 65) = P(14 < X < 32.5) = \int_{14}^{32.5} \frac{1}{25} e^{-x/25} \, dx = -e^{-x/25} \big|_{x=14}^{32.5} = e^{-14/25} - e^{-32.5/25} = 0.2987. \)

3b. We have \( P(|X - 3.1| > 1.5) = P(X - 3.1 > 1.5) + P(X - 3.1 < -1.5) = P(X > 4.6) + P(X < 1.6) = \int_{1.6}^{6.2} 1/6.2 \, dx + \int_{0}^{1.6} 1/6.2 \, dx = (6.2 - 1.6)/6.2 + (1.6 - 0)/6.2 = 3.2/6.2 = 0.5161. \)

4a. We have \( 1 = \int_{3}^{4} (k)(x-3)(x-4) \, dx = \int_{3}^{4} (k)(x^2 - 7x + 12) \, dx = (k)(x^3/3 - 7x^2/2 + 12x) \big|_{x=3}^{x=4} = (k)(40/3 - 27/2) = (k)(-1/6), \) and therefore, we conclude that \( k = -6. \)

4b. We compute \( P(X > 3.25) = \int_{3.25}^{4} (-6)(x-3)(x-4) \, dx = \int_{3.25}^{4} (-6)(x^2 - 7x + 12) \, dx = (-6)(x^3/3 - 7x^2/2 + 12x) \big|_{3.25}^{4} = (-6)(40/3 - 2587/192) = 27/32 = 0.84375. \)