1. The probability mass function \(p_Y(y) \) of \(Y \) evaluated at \(y = 1 \) is

\[
p_Y(1) = \sum_{x=1}^{\infty} (11/16)(1/4)^{x-1}(1/3)^{1-x} = (11/16)/(1-1/4) = 11/12.
\]

So the conditional probability mass function of \(X \), given \(Y = 1 \), is

\[
p_{X|Y}(x \mid 1) = \frac{p_{X,Y}(x,1)}{p_Y(1)} = \frac{(11/16)(1/4)^{x-1}(1/3)^{1-x}}{11/12} = (3/4)(1/4)^{x-1} \text{ for } x \geq 1, \text{ and } p_{X|Y}(x \mid 1) = 0 \text{ otherwise.}
\]

Therefore, given \(Y = 1 \), the conditional distribution of \(X \) is Geometric with \(p = 3/4 \), so \(\mathbb{E}(X \mid Y = 1) = 1/p = 4/3 \).

2. The probability density function \(f_Y(y) \) of \(Y \) evaluated at \(y = 1 \) is

\[
f_Y(1) = \int_0^{25/3} 1/30 \, dx.
\]

(The upper limit on the integral comes from the fact that the hypotenuse of the triangle is the line \(y = -(6/10)x + 6 \), i.e., \(x = 10 - (10/6)y \), so when \(y = 1 \) on this hypotenuse, we have \(x = 10 - (10/6) = 50/6 = 25/3 \).)

Therefore, we get \(f_Y(1) = (25/3)(1/30) = 25/90 = 5/18 \). So the conditional probability density function of \(X \), given \(Y = 1 \), is

\[
f_{X|Y}(x \mid 1) = \frac{f_{X,Y}(x,1)}{f_Y(1)} = \frac{1/30}{5/18} = 3/25 \text{ for } 0 \leq x \leq 25/3, \text{ and } f_{X|Y}(x \mid 1) = 0 \text{ otherwise.}
\]

Therefore, given \(Y = 1 \), the conditional distribution of \(X \) is Continuous Uniform on \([0, 25/3]\), so \(\mathbb{E}(X \mid Y = 1) = (0 + 25/3)/2 = 25/6 \).

3. The probability density function \(f_X(x) \) of \(X \) evaluated at \(x = 20 \) is:

\[
f_X(20) = \int_0^{\infty} (1/750)e^{-(20/150+y/30)}dy = -(1/25)e^{-(2/15+y/30)}|_{y=20} = (1/25)e^{-(2/15+20/30)} = (1/25)e^{-4/5}.
\]

So the conditional probability density function of \(Y \), given \(X = 20 \), is

\[
f_{Y|X}(y \mid 20) = \frac{f_{X,Y}(20,y)}{f_X(20)} = \frac{(1/750)e^{-(20/150+y/30)}}{(1/25)e^{-4/5}} = (1/30)e^{-(y-20)/30} \text{ for } y > 20, \text{ and } f_{Y|X}(y \mid 20) = 0 \text{ otherwise.}
\]

Therefore, given \(X = 20 \), the conditional expected value of \(Y \) is

\[
\mathbb{E}(Y \mid X = 20) = \int_0^{\infty} (y)(1/30)e^{-(y-20)/30}dy = \int_0^{\infty} (y+20)(1/30)e^{-y/30}dy.
\]

We know that \(\int_0^{\infty} (y)(1/30)e^{-y/30}dy = 30 \) (this is the expected value of an Exponential random variable with \(\lambda = 1/30 \)), and we know that \(\int_0^{\infty} (20)(1/30)e^{-y/30}dy = 20 \int_0^{\infty} (1/30)e^{-y/30}dy = 20 \) (this is just integrating the probability density function of an Exponential random variable with \(\lambda = 1/30 \), and then multiplying by 20). So we conclude that \(\mathbb{E}(Y \mid X = 20) = 30 + 20 = 50 \).

Alternatively, we could have used integration by parts.

4. Let \(X \) denote the value on the blue die, and let \(Y \) denote the value of the sum of the two dice.

The probability mass function \(p_Y(y) \) of \(Y \) evaluated at \(y = 9 \) is \(p_Y(9) = 4/36 \), since exactly 4 of the 36 equally likely results for the pair of dice will make the sum \(Y \) be equal to 9.

So the conditional probability mass function of \(X \), given \(Y = 9 \), is

\[
p_{X|Y}(x \mid 9) = \frac{p_{X,Y}(x,9)}{p_Y(9)} = \frac{1/36}{4/36} = 1/4 \text{ for } x = 3, 4, 5, 6, \text{ and } p_{X|Y}(x \mid 9) = 0 \text{ otherwise.}
\]

Therefore, given \(Y = 9 \), we compute

\[
\mathbb{E}(X \mid Y = 9) = (1/4)(3) + (1/4)(4) + (1/4)(5) + (1/4)(6) = 9/2.
\]